

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

6th Semester Syllabus for Business Analytics For BBA Admission Batch 2022

Syllabus Structure:

COURSE 3rd Year Course Structure: 2025 – Even Semester

	BBA BA COURSE Structure								
			SEMESTER 6						
SL NO	TYPES OF COURSE	SUB CODE	SUB NAME	L	Т	Р	S	TOTAL CONTACT HRS	CREDI T POINT S
	THEORY							-	
1.	CC	BBABB601	Supply Chain and Logistics Management	3	1	0	0	4	4
2.	AEC	BBA(GS)601	General Studies & Current Affair - VI	2	0	0	0	2	2
	PRACTICAL								
1	VAC	BBABB691	Supply Chain and Logistics Management - Laboratory	0	0	2	0	2	2
2	VAC	BBABB681	Project And Viva Voice	5	1	0	0	6	6
	BUSINESS ANALYTICS SPECIALIZATION								
			THEORY						
1.	CC	BBABA602	Advanced Data Analytics	3	1	0	0	4	4
2.	CC	BBABA603	Econometrics	3	1	0	0	4	4
3.	CC	BBABA604	Data Mining	3	1	0	0	4	4
			PRACTICAL						
1	VAC	BBABA692	Advanced Data Analytics - Laboratory	0	0	2	0	2	2
2	VAC	BBABA693	Econometrics - Laboratory	0	0	2	0	2	2
3	VAC	BBABA694	Data Mining - Laboratory	0	0	2	0	2	2
			SESSIONAL						

1	SEC	BBA(GS)681	Competitive Aptitute & Training -VI	1	0	0	1	1
	MOOCS/MAR/IFC							
1		IFC	Industry & Foreign Certification					
2		MAR	Mandatory Additional Requirements					
3		MOOCs	At least 1 MOOCs course from Swayam Platform					

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur Syllabus for BBA Admission Batch 2022

Subject Name: Supply Chai	n and Logistics M	Ianagement	Credit: 4	Lecture Hours: 40
Subject Code: BBABB601				
Pre-requisite: NA				
Relevant Links:				
Study Material	<u>Coursera</u>	NPTEL	LinkedIn Learnin	g <u>Infosys</u>
Springboard				
COURSE OBJECTIVES	:			

- 1. To understand the key concepts applied in supply chain & logistics management.
- 2. To understand how supply chain & logistics management plays an important role in the business.
- 3. To Identify and analyze supply chain & logistics problems & design optimal solutions.
- 4. To understand new trends in supply chain & logistics management.

COURSE OUTCOMES:

- **CO1:** Understand the nature of SC and explain the impact of supply chain decisions on the success of the firm.
- **CO2:** Examine the role of each driver on the performance of SC
- **CO3:** Evaluate the strengths and weaknesses of different modes of transportation, understand the role of warehousing and packaging and also evaluate the warehousing strategies
- **CO4:** Appraise the various latest trends in SC and Logistics Management

Module number	Торіс	Sub-topics	Text Book	Mapping with Industry and International Academia	Lecture Hours	Correspond ing Lab Assignment
1	Introdu ction to Supply Chain Manage ment	• Introduction to SC, Evolution of SC, Flows in SC, SC stages, Objectives of SC, SC Decision Phases, Decisions in SC, Process View of SC, Cycle view and Push-Pull view, Extended SC, SC Integration, Performance Metrics, Challenges in SC	Text Book 1: Supply chain management – Strategy, Planning and Operation by Sunil Chopra, D. V. Kalra, Pearson, 7 th Edition, 2019 Chapter: 1	International Academia: https://ocw.mit.edu/courses/e sd-273j-logistics-and-supply- chain-management-fall- 2009/ Industry Mapping: Problem-Solving and Decision-Making	10	 Video Discussion on Introduction to SC Case Study: Zara: Apparel Manufacturing & Retail Toyota: A Global Auto Manufacturer Amazon: Online Sales Jaipur Rugs Company: A Socioeconomic Network Source: Supply chain management – Strategy, Planning and Operation by Sunil Chopra, D. V. Kalra, Pearson, 7th Edition, 2019 Chapter: 1 (Pg. No. – 16-21)
2	Supply Chain Frame work & Drivers	 Impellers of SC, Drivers of SC Performance, Framework for structuring drivers SC Drivers: Facilities, Inventory, Transportation, Information, Sourcing, Pricing. 	Text Book 1: Supply chain management – Strategy, Planning and Operation by Sunil Chopra, D. V. Kalra, Pearson, 7 th Edition, 2019 Chapter: 3	International Academia:https://ocw.mit.edu/courses/15-763j-manufacturing-system-and-supply-chain-design-spring-2005/Industry Mapping:Supply Chain Planning,Adaptability and Flexibility	10	Case Study • 7 Eleven Japan Co. Source: Supply chain management – Strategy, Planning and Operation by Sunil Chopra, D. V. Kalra, Pearson, 7 th Edition, 2019 Chapter: 3 Page 4

3Introdu ction to LogisticCriteria, Modes of Transportation, Intermodal Transportation, 	Care p ics by V. V.
 Logistic s Mix Material Handling and Storage Packaging: Consumer and Logistical packaging, Unitization, Packaging Material, Returnable Logistical Packaging, Packaging Cost Material Handling and Storage Packaging Cost 	
Recent • Sustainability in SC Text Recels	
Trends in• GreenSupplyChainText Book 1: Supply chainInternational Academia:	
4 Supply • Reverse Supply Chain management – <u>https://ocw.mit.edu/courses/esd-</u>	
chain & Vendor managed Strategy, Planning s43-green-supply-chain-	
Logistics inventory and Operation by <u>management-spring-2014/</u>	
Manage • Bar-coding & RFID. Sunil Chopra, D. Industry Mapping:	

	Logistics Chapter: A	Supply Chain Planning, Adaptability and Flexibility	10	Video Discussion on Green SCM, Implementation of RFID Source: Youtube Case Study: • Indian Paints • Zara Source: Supply Chain Management by V. V. Sople, Pearson, 1 st Edition, 2012 (Pg. No. 464, 475)
--	----------------------	--	----	---

Prepared By: Prof. (Dr.) Shweta Kishore & Prof. Tanmoy Chakraborty

TEXT BOOK:

- 1. Supply chain management Strategy, Planning and Operation by Sunil Chopra, D. V. Kalra, Pearson, 7th Edition, 2016 (Chapter 1, 3, A)
- 2. Logistics Management by V. V. Sople, Pearson, 3rd Edition, 2012 (Chapter - 1, 4, 5, 6, 8, 9, 15, 23
- 3. Supply Chain Management by V. V. Sople, Pearson, 1st Edition, 2012 (Chapter- 18, 22, 27)

REFERENCE BOOKS:

- 1. Supply Chain Management Process, System and Practice by N. Chandrasekaran, Oxford University Press, 2013
- 2. Supply Chain Management- Text and Cases, Jannat Shah, 2nd Edition, Pearson

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

Syllabus for BBA Admission Batch 2022

Subject Name: Supply Chain and Logistics Management – Laboratory Credit: 2 Lecture Hours: 20

Subject Code: BBABB691

Pre-requisite: NA

Module number	Торіс	Sub-topics	TextBook	Mapping with Industry and International Academia	Lecture Hours
1	Analyzin g the Supply Chain Practices and its impact on performa nce	 Walmart 7 Eleven Japan Dmart Reliance Subhiksha 	Text Book 1: Supply chain management – Strategy, Planning and Operation by Sunil Chopra, D. V. Kalra, Pearson, 7 th Edition, 2019 Chapter: 1	International Academia: https://ocw.mit.edu/courses/es d-273j-logistics-and-supply- chain-management-fall-2009/ Industry Mapping: Problem-Solving and Decision-Making	10 Hours

2 Logistics	• Logistics network design with	Text Book 1:	International Academia:	10 Hours
Network Design	 differentiated delivery lead time Logistics network design with price discount Consolidated logistics network design using consolidation hubs. 	Logistics Management by V. V. Sople, Pearson, 3 rd Edition, 2012 Chapter -1, 4, 5, 6, 8, 9	https://ocw.mit.edu/courses/esd- 260j-logistics-systems-fall-2006/ Industry Mapping: Planning, Negotiation Skills	

Prepared By: Prof. (Dr.) Shweta Kishore & Prof. Tanmoy Chakraborty

TEXT BOOK:

- Supply chain management Strategy, Planning and Operation by Sunil Chopra, D. V. Kalra, Pearson, 7th Edition, 2016 (Chapter 1, 3, A)
- 2. Logistics Management by V. V. Sople, Pearson, 3rd Edition, 2012 (Chapter - 1, 4, 5, 6, 8, 9, 15, 23
- 3. Supply Chain Management by V. V. Sople, Pearson, 1st Edition, 2012

(Chapter- 18, 22, 27)

REFERENCE BOOKS:

- 1. Supply Chain Management Process, System and Practice by N. Chandrasekaran, Oxford University Press, 2013
- 2. Supply Chain Management- Text and Cases, Jannat Shah, 2nd Edition, Pearson

University of Engineering and Management Institute of Engineering & Management, Salt Lake Campus

Syllabus for BBA Admission Batch 2022

WORKING DAY	DAY	LESSON PLAN – DESCRIPTION	
Module 1 & 2 -P	rof. (Dr.) Shweta Kishoi	re	
1	1	Syllabus Discussion	
2	2	 Module 1: Introduction to SC Definition of Supply Chain Management (SCM) Key components of a supply chain: suppliers, manufacturers, distributors, retailers, and customers. Role of SCM in modern business and its impact on customer satisfaction, cost reduction, and competitive advantage. 	
3	3	 Evolution of SC: Early Supply Chains (pre-industrial era). Industrial Revolution and its impact on SCM. The rise of logistics and transportation. Technological advancements and global supply chains. 	
4	4	 SC stages: Importance of each stage and its interdependencies. Case Study Application: Zara 	
5	5	 Objectives of SC, SC Decision Phases: Key objectives that organizations aim to achieve through effective supply chain management. Different phases of decision-making in SCM. Case Study Application: Amazon: Online Sales Analyze how Amazon manages these phases at different levels to maintain its competitive advantage. 	
6	6	 Decisions in SC Decisions made in SCM and their impact on the business Case Study Application: Amazon 	

		• Examine how Amazon leverages data for decision-making in inventory management, demand forecasting, and supply chain planning.
7	7	 Process View of SC, Cycle view and Push-Pull view Process view of SCM and the different processes involved Case Study Application: Toyota Analyze Toyota's hybrid push-pull system, especially in the Just-in-Time (JIT) manufacturing process.
8	8	 Extended SC, SC Integration Importance of extending and integrating supply chains
9	9	 Performance Metrics, Challenges in SC Key Performance Indicators and different challenges for the supply chain
10	10	Summary of the entire module and open discussion on challenges and future trends in SCM.
11	11	 Module 2: Supply Chain Framework & Drivers To introduce the concept of impellers (factors that accelerate) of the supply chain and the key drivers that determine its performance.
12	12	 Drivers of Supply Chain Performance Explore the key drivers that determine supply chain performance. Discuss how companies like Amazon optimize their drivers to enhance performance.
13	13	Framework for Structuring Supply Chain Drivers Introduce a framework for understanding how to structure and optimize supply chain drivers.
14	14	Facilities as a Supply Chain Driver To explore the role of facilities (warehouses, factories, distribution centers) in the supply chain and how they impact performance.

15	15	
		Inventory as a Supply Chain Driver
		To understand the role of inventory in the supply chain and the techniques for managing it effectively.
16	16	Transportation as a Supply Chain Driver
		To analyze the transportation driver in supply chains, focusing on its role in cost, speed, and reliability.
17	17	Information as a Supply Chain Driver
		To highlight the importance of information as a critical driver in managing and coordinating supply chains.
18	18	Sourcing as a Supply Chain Driver
		To understand how sourcing (procurement and supplier management) affects the efficiency and competitiveness of a supply chain.
19	19	Pricing as a Supply Chain Driver
		To explore the role of pricing in a supply chain and how it influences demand, profitability, and competitiveness.
20	20	Integrating the Six Supply Chain Drivers and Performance Metrics
		To integrate the six drivers of supply chain performance and explore how they can be optimized together
		 Case Study: 7 Eleven Japan Co.
Module 3	8 & 4 (Prof. Tanmoy Chakra	aborty)
1	1	Module 3: Introduction to Logistics management & Logistics Mix

Subject Name: Advanced Data Analytics Credit:4

Lecture Hours: 40

		To introduce the concept of logistics management, its importance in supply chains, and the components of the logistics mix.
2	2	Transportation: Role of Transportation, Selection criteria, Modes of Transportation, Intermodal Transportation:
		 Understand the critical role of transportation in logistics and supply chain management.
		• Explore the criteria used to select transportation modes and strategies for different logistics needs.
3	3	
		Transportation Network, Freight Management
		• Explore the structure of transportation networks and the management of freight.
4	4	 Containerization, Video Discussion on Containerization Understand containerization and its role in streamlining transportation and improving logistics efficiency.
5	5	 Warehousing: Objectives, Functions, Video Discussion on Warehousing Introduce warehousing and understand its functions and importance in logistics.
6	6	 Warehouse options, Warehouse Site selection, Layout Design, Warehouse Strategies Explore warehouse site selection, layout design, and operational strategies.
7	7	Material Handling and Storage, Video Discussion on Material Handling
8	8	Packaging: Consumer and Logistical packaging, Unitization, Packaging Material, Returnable Logistical Packaging, Packaging Cost
9	9	Case Study: • Cadbury Products
10	10	Case Study: • ROX Doc Care • Suman Crop Protection

11	11	Module 4: Recent Trends in Supply chain & Logistics Management
		Introduction to Sustainability in Supply Chain
		Introduce the concept of sustainability and its importance in modern supply chain management.
12	12	 Green Supply Chain Management, Video Discussion on Green SCM Explore Green Supply Chain Management (GSCM) and its strategies for achieving sustainable practices in supply chains.
13	13	 Reverse Supply Chain Understand the concept and operations of Reverse Supply Chain (RSC) and its role in sustainability.
14	14	 Vendor managed inventory Explore Vendor Managed Inventory (VMI) and its impact on inventory management, cost reduction, and collaboration.
15	15	Bar-coding & RFID, Implementation of RFID Role of barcoding and RFID in improving supply chain visibility and efficiency.
16	16	Role of IT in the Supply Chain Explore the role of Information Technology (IT) in enhancing supply chain operations and decision-making.
17	17	 E-Business and the Supply Chain Understand the role of E-business and digital platforms in transforming supply chains
18	18	 Cold Chain Logistics Explore Cold Chain Logistics and its importance in the transportation of temperature-sensitive goods.
19	19	 AI in Supply Chain Understand the role of AI in transforming supply chain management through automation, data analytics, and decision-making
20	20	Integrating Sustainability and Technology in Supply Chain
		Integrate sustainability practices with emerging technologies in the supply chain, including AI, IT, and Green SCM
		Case Study: • Indian Paints • Zoro
		 Indian Paints Zara

Subject Code: BBABA602

Pre-requisite: Basic knowledge of Python programming, Algorithm

And basic knowledge of data analytics

Relevant Links:

BBABB602 Study Material and Syllabus.docx NPTEL Coursera

COURSE OBJECTIVES:

- 1. To describe the role of data analytics and decision support systems in business and record the current issues with those of the firm to solve business problems.
- 2. To introduce the fundamental principles of computer-based information analysis and design and develop an understanding of the principles and techniques used.
- 3. To enable students to understand the various knowledge representation methods and different expert system structures as strategic weapons to counter the threats to business and make business more competitive.
- 4. To enable the students to use of data analysis to assess the impact of Technology on electronic commerce and electronic business and understand the specific threats and vulnerabilities of computer systems.

COURSE OUTCOMES:

- CO1: The students will be able to relate the basic concepts and technologies used in the field of data analytics.
- CO2: The students will be able to compare the processes of developing and implementing data analytics algorithms.
- CO3: The students will be able to examine the role of the ethical, social, and security issues of data analytics systems.
- CO4: The students will be able to investigate and translate the role of data analytics in organizations, and the strategic management processes, with the implications for the management.

Module number	Торіс	Sub-topics	Mapping with Industry and International Academia	Lectur e Hours	Corresponding Lab Assignment
1	Linear Regressi on Analysis :	 Simple Linear Regression: Introduction – Overview – Importance -Least Square Method– Normal Equations - Calculation of Regression Coefficients – Properties of Regression Line – Uses of Regression; Multiple Linear Regression: Overview – Importance - Least Square Method –- Normal Equations – Calculation of Regression Coefficients - Properties of OLS Regression Line – Properties of OLS Regression Line – Properties – Measuring Goodness of FIT –Adjusted R square – Testing Overall Significance of Regression – Testing Relevance of an Additional Explanatory Variable 	International Academia: https://ocw.mit.edu/courses /18-s096-topics-in- mathematics-with- applications-in-finance- fall-2013/resources/lecture- <u>6-regression-analysis/</u> Industry Mapping: Creating a Predictive model	12	Simple Linear Regression: Introduction – Overview – Importance -Least Square Method– Normal Equations - Calculation of Regression Coefficients – Properties of Regression Line – Uses of Regression; 1. Multiple Linear Regression: Overview – Importance - Least Square Method –-Normal Equations – Calculation of Regression Coefficients - Properties of OLS
2	Binary Logistic Regressio n	 Basic concept of Logistic Regression – Assessing the Model – log-likelihood statistic – deviance statistic – R and R2 – Wald Statistic – odds ratio – Sources of Bias and Common Problems - Interpreting Binary Logistic Regression 	International Academia: https://ocw.mit.edu/courses/ 15-071-the-analytics-edge- spring-2017/pages/logistic- regression/ Industrial Mapping : Predictive model creation	12	Basic concept of Logistic Regression – Assessing the Model – 1. log-likelihood statistic – deviance statistic – R and R2
3	Factor Analysis	 Basic concept of Factor Analysis, Factor Analysis Model, Statistics Associated with Factor Analysis, Factor Analysis Process – Formulate the Problem – Construct the Correlation Matrix- Determine the method of Factor Analysis –Determine the number of Factors – Factor Extraction eigenvalues and scree plot- Factor Rotation – Interpret Factors – Calculate Factor Scores - Determine Model Fit. 	International Academia: https://ocw.mit.edu/courses/ 18-s096-topics-in- mathematics-with- applications-in-finance-fall- 2013/resources/lecture-15- factor-modeling/ Industrial Mapping : Predictive model creation	12	Basic concept of Factor Analysis, Factor Analysis Model, Statistics Associated with Factor Analysis, Factor Analysis Process – Formulate the Problem – Construct the

					Correlation Matrix- Determine the method of Factor Analysis –
4	Cluster Analysis	 Basic concept of Cluster Analysis, Statistics Associated with Cluster Analysis, Cluster Analysis Process - Formulate the Problem – Select a distance measure – Select a clustering procedure – Decide on the number of Clusters – Interpret and Profile Cluster – Asses the reliability and validity. 	International Academia: https://ocw.mit.edu/courses/ 6-0002-introduction-to- computational-thinking-and- data-science-fall- 2016/resources/lecture-12- clustering/ Industrial Mapping : Predictive model creation	12	Basic concept of Cluster Analysis, Statistics Associated with Cluster Analysis, Cluster Analysis Process

Text Book:

• Business Analytics: An Application Focus by P Halady, Prentice Hall India Learning Private Limited

References:

- 1. Sankar Kumar Bhaumik: Principles of Econometrics, Oxford University Press
- 2. Basic Econometrics D.N. Gujarati and D.C. Porter, Tata McGraw Hill.
- 3. Marketing Research An Applied Orientation by by Naresh K. Malhotra and Satyabhusan Das, Pearson India Education Services Pvt.

Ltd

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering and Management, New Town Campus University of Engineering & Management, Jaipur

Syllabus for B.B.A. Admission Batch 2022

Subject Name: Advanced Data Analytics - Laboratory

Credit: 2

Lecture Hours: 20

Subject Code: BBABA692

Pre-requisite: Basic knowledge of programming

Module number	Торіс	Sub-topics	TextBook	Mapping with Industry and International Academia	Lecture Hours
1	Regression Application	Importance - Least Square Method Normal Equations – Calculation of Regression Coefficients - Properties of OLS Regression Line – Properties of	An Application Focus by P Halady, Prentice Hall India Learning Private	<i>International Standards:</i> https://ocw.mit.edu/courses/18- s096-topics-in-mathematics- with-applications-in-finance-fall- 2013/resources/lecture-6- regression-analysis/ <i>Industry Mapping:</i> Creating a Predictive model	10

	of Regression – Testing Relevance of an Additional Explanatory Variable			
2 Cluster Analysis	Basic concept of Cluster Analysis, Statistics Associated with Cluster Analysis, Cluster Analysis Process - Formulate the Problem – Select a distance measure – Select a clustering procedure – Decide on the number of Clusters – Interpret and Profile Cluster – Asses the reliability and validity	An Application Focus by P Halady, Prentice Hall India Learning Private	International Standards https://ocw.mit.edu/courses/6- 0002-introduction-to- computational-thinking-and- data-science-fall- 2016/resources/lecture-12- clustering/ Industry Mapping: Predictive model creation	10

Lesson Plan: Faculty – Prof. Kamalika Dasgupta

Days	Lesson Plan Description			
Module 1: Linear Regression Analysis				
Day 1	Introduction to Linear Regression: Overview of Regression Analysis, importance, and types.			
Day 2	Simple Linear Regression: Definition, assumptions, model building, and interpretation.			
Day 3	Estimation Methods in Linear Regression: Ordinary Least Squares (OLS) method, maximum likelihood estimation.			
Day 4	Data Preparation: Exploring data for linear regression, checking assumptions (normality, linearity, homoscedasticity).			
Day 5	Fitting Simple Linear Regression: Hands-on examples using datasets.			
Day 6	Model Evaluation: Understanding R-squared, Adjusted R-squared, residual analysis.			
Day 7	Multiple Linear Regression: Extending simple regression to multiple predictors, interaction terms.			

Days	Lesson Plan Description				
Day 8	Model Assumptions and Diagnostics: Multicollinearity, homoscedasticity, normality of residuals, checking assumptions.				
Day 9	Multicollinearity and VIF: Variance Inflation Factor and how to handle multicollinearity.				
Day 10	Model Selection Techniques: Stepwise regression, AIC/BIC criteria.				
Day 11	Overfitting and Underfitting: Understanding bias-variance tradeoff.				
Day 12	Regularization Methods: Introduction to Lasso and Ridge regression for model tuning.				
Day 13	Model Interpretation: Coefficients, significance tests, and confidence intervals in regression.				
Day 14	Case Study: Hands-on project on Linear Regression with a real dataset.				
Module 2: Binary Logistic Regression					
Day 15	Introduction to Logistic Regression: Overview and when to use logistic regression for classification.				
Day 16	The Logistic Function: Understanding the sigmoid function, odds, and log-odds.				
Day 17	Model Building in Logistic Regression: Creating binary outcome models, estimation techniques.				
Day 18	Assumptions of Logistic Regression: Exploring independence, linearity in the logit, and large sample size.				
Day 19	Model Interpretation: Interpreting coefficients, odds ratio, and their significance.				
Day 20	Evaluating Model Performance: Confusion matrix, accuracy, precision, recall, F1-score.				
Day 21	Model Evaluation Metrics: ROC curve, AUC, and their importance in classification.				
Day 22	Regularization in Logistic Regression: Lasso and Ridge for logistic regression.				
Day 23	Model Diagnostics: Identifying influential observations, multicollinearity, and outliers.				
Day 24	Dealing with Imbalanced Data: Techniques like SMOTE, resampling, and cost-sensitive learning.				
Day 25	Advanced Topics in Logistic Regression: Multinomial and ordinal logistic regression.				
Day 26	Model Validation: Cross-validation and validation techniques for logistic models.				
Day 27	Case Study: Hands-on project on Binary Logistic Regression with a real dataset.				

Days	Lesson Plan Description					
Lesson Plan: Faculty – Prof. Sayan Karmakar						
Module 3: Factor Analysis						
Day 28	Introduction to Factor Analysis: Purpose, applications, and types of factor analysis.					
Day 29	Assumptions of Factor Analysis: Linearity, normality, and large sample size.					
Day 30	Exploratory Factor Analysis (EFA): Steps, factor extraction, and rotation methods.					
Day 31	Factor Loadings and Interpretation: How to interpret factor loadings and variance explained.					
Day 32	Factor Extraction Methods: Principal Component Analysis (PCA) vs. Principal Axis Factoring (PAF).					
Day 33	Factor Rotation Techniques: Orthogonal vs. oblique rotation, Varimax, and Promax.					
Day 34	Determining the Number of Factors: Eigenvalues, Scree plot, and Kaiser criterion.					
Day 35	Confirmatory Factor Analysis (CFA): Model specification, fit indices, and hypothesis testing.					
Day 36	Factor Scores: Computing and interpreting factor scores.					
Day 37	Applications of Factor Analysis: Using factor analysis for data reduction and structure identification.					
Day 38	Case Study: Hands-on project on Factor Analysis with a real dataset.					
Module 4: Cluster Analysis						
Day 39	Introduction to Cluster Analysis: What is clustering, types of clustering (hierarchical, partitional).					
Day 40	K-means Clustering: Algorithm, choosing the number of clusters, and interpretation of results.					
Day 41	Hierarchical Clustering: Agglomerative vs. divisive, dendrogram, and linkage methods.					
Day 42	Model Evaluation in Clustering: Silhouette score, Davies-Bouldin index.					
Day 43	Advanced Clustering Techniques: DBSCAN, Gaussian Mixture Models, and their applications.					
Day 44	Dimensionality Reduction for Clustering: PCA and t-SNE in the context of clustering.					
Day 45	Applications of Clustering: Market segmentation, anomaly detection, image segmentation.					

Days	Lesson Plan Description	
Day 46	Visualizing Cluster Results: Using PCA, t-SNE, and other visualization techniques for clusters.	
Day 47	Model Tuning in Clustering: Hyperparameter tuning for clustering algorithms.	
Day 48	Case Study: Hands-on project on Cluster Analysis with a real dataset.	

QUESTION PAPER PATTERN AND DATES

EXAMINATION	Dates	PART – A	PART – B	PART – C	TOTAL MARKS
Mid Term 1	February 10, 2025 to February 21, 2025	Attempt 5 out of 10 questions; Each question carries 2 marks (2×5)	Attempt 2 out of 4 questions; Each question carries 5 marks (5×2)	Attempt 1 out of 2 questions; Each question carries 10 marks (10×1)	30
Mid Term 2	March 24, 2025 to April 2, 2025	Attempt 5 out of 10 questions; Each question carries 2 marks (2×5)	Attempt 2 out of 4 questions; Each question carries 5 marks (5×2)	Attempt 1 out of 2 questions; Each question carries 10 marks (10×1)	30
End Semester Examination	April 21, 2025 to May 9, 2025	Attempt 10 out of 15 questions; Each question carries 2 marks (2×10)	Attempt 6 out of 9 questions; Each question carries 5 marks (5×6)	Attempt 5 out of 8 questions; Each question carries 10 marks (10×5)	100

Examination Rules & Regulations:

https://iemcollegemy.sharepoint.com/:b:/g/personal/iemcoe_office_iem_edu_in/EXrcoe3d6oxIogHKO074XeUBC9qm3XNaf_qUeSiVTN h5OQ?e=MMQn40

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur Syllabus for BBA in Business Analytics Admission Batch 2022

Subject Name: Econometrics

Credit: 4

Lecture Hours: 40

Subject Code: BBABA603

Study Material Coursera

NPTEL LinkedIn Learning

Course Objective:

- 1. To understand the econometric theory and arguments used in the economics literature.
- 2. To apply econometric techniques to real-world economic issues, demonstrating the ability to use econometrics as a tool for empirical analysis and policy evaluation.
- 3. To construct econometric models from the economic model, and to estimate the model's parameters using regression analysis starting from the ordinary least squares (OLS) estimation method.
- 4. Students will be introduced to statistical software packages used to estimate regression models.

Course Outcome:

CO1: Students will learn to specify and formulate economic models, including choosing the appropriate functional forms and variables to represent economic relationships.

CO2: Students will learn to test the empirical validity of economic theory and models using empirical data and forecast future trends.

CO3.Students will be able to estimate and interpret linear regression models and be able to distinguish between economic and statistical importance CO4.They will be able to use a statistical/econometric computer package to estimate an econometric model and be able to report the results of their work in a non-technical and literate manner.

Module number	Торіс	Sub-topics	TextBook	Mapping with Industry and International Academia	Lectur e Hours	Corresponding Lab / Case-Study Assignment
1	Nature and Scope of Econometrics	 1.1 Distinction between Economic Model and Econometric model 1.2 Steps in formulating Econometric model (Specification, Estimation, Testing of Hypothesis, Forecasting) 	Principles of Econometrics A Modern Approach Using EViews, <u>Sankar Kumar</u> <u>Bhaumik</u> , Oxford University Press	International Standards: <u>https://ocw.mit.edu/</u> courses/15-015- <u>macro-and-</u> international- <u>economics-fall-</u> 2011/resources/mit1	10 Hours	Building regression model using stata
		 1.3 Structure of Economic Data (cross-section, time series, pooled, panel) 1.4 Application of Econometrics in Management. 1.5 The nature of regression analysis: regression versus causation; regression versus correlation 	Chapter – 1 Study Material – Module 1	<u>5_015f11_lec01/</u> <u>https://ocw.mit.edu/</u> <u>courses/14-02-</u> <u>principles-of-</u> <u>macroeconomics-</u> <u>fall-</u> <u>2004/resources/lectu</u> <u>re2/</u> <u>https://archive.nptel.</u> <u>ac.in/courses/130/10</u> <u>6/130106001/</u> Industry Mapping: Data analysis in Stata		
2		2.1 Definition of Simple Linear Regression Model (SLRM).		International Standards:	10 Hours	Estimation of Simple Linear Regression Model

	Regression Model:	2.2 The classical assumptions (basic	Principles of Econometrics A	https://ocw.mit.edu/c ourses/15-071-the-		using OLS technique in stata
	Properties and	interpretation).	Modern Approach	analytics-edge-		stata
		2.3 Concepts of population regression function and sample regression function.	Using EViews, <u>Sankar Kumar</u> <u>Bhaumik,</u> Oxford University Press	spring- 2017/pages/linear- regression/the- statistical-sommelier- an-introduction-to-		
		2.4 Estimation of model by method of ordinary least squares.	Chapter-2	linear-regression/		
		2.5 Economic interpretations of the estimated model.	Study Material – Module 2	(https://web.stanford. edu/ class/archive/ee/ee1		
		2.6 Properties of the Least Squares Estimators (BLUE) in SLRM- Gauss- Markov theorem.		08a/ee 108a.1082/schedule. html)		
				https://archive.nptel. ac.in/courses/130/10 6/130106001/		
				Industry Mapping: Data analysis in Stata		
3	Statistical inference in linear regression model	 3.1 Use of standard normal, chi2, t, and F statistics in linear regression model. 3.2 Testing hypothesis Single test (t test and chi2 test) 	Principles of Econometrics A Modern Approach Using EViews, <u>Sankar Kumar</u>	International Standards: https://ocw.mit.edu/co urses/14-30-	10 Hours	Testing of hypothesis using stata
		3.3 Goodness of fit (in terms of R2, adjusted R2 and F statistic).	<u>Bhaumik</u> , Oxford University Press Chapter-2	introduction-to- statistical-method-in- economics-spring- 2006/pages/lecture- notes/		
		3.4 Statistical significance and economic importance.	Study Material – Module 3	https://archive.nptel.a c.in/courses/130/106/1 30106001/		

		Industry Mapping:		
		Data analysis in Stata		
Detection (Variance Inflationary Factor (VIF)) and Remedies.	Principles of Econometrics A Modern Approach Using EViews, <u>Sankar Kumar</u> <u>Bhaumik</u> , Oxford University Press Chapter-4, 5, 6 Study Material – Module 4	International Standards: https://ocw.mit.edu/c ourses/15-071-the- analytics-edge- spring- 2017/pages/linear- regression/the- statistical-sommelier- an-introduction-to- linear- regression/video-6- correlation-and- multicollinearity/ https://archive.nptel. ac.in/courses/130/10 6/130106001/ Industry Mapping: Data analysis in Stata	10 Hours	Detection of Multicollinearity, Heteroscedasticity, Autocorrelation using stata.

Submitted by Dr. Debarati Ghosh, IEM Saltlake campus

TextBook:

Principles of Econometrics A Modern Approach Using EViews, Sankar Kumar Bhaumik, Oxford University Press

Reference Books:

Wooldridge, Jeffrey M. (2013), Introductory Econometrics – A Modern Approach, CENGAGE learning

Gujarati, Damodar (2004), Basic Econometrics, McGraw-Hill

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

Syllabus for BBA in Business Analytics Admission Batch 2022

Subject Name: Econometrics-Laboratory

Credit: 2

Lecture Hours: 20

Subject Code: BBABA693

Module number	Торіс	Sub-topics	TextBook	Mapping with Industry and International Academia	Lecture Hours
1	I:	Use of Econometric Software: Stata – Data Management, Generating Variables, Describing Data, Graphs,Logical Operators in Stata, Functions Used in Stata	Panchanan Das: Econometrics in Theory and Practice, Analysis of Cross Section, Time Series and Panel Data with Stata 15.1, Springer Nature Singapore Pte Ltd. 2019. , Wiley	International Standards Data Visualization in Stata Coursera Industry Mapping: Data Visualization in stata	6 Hours
2	Module II:	Linear Regression Model by Using Stata :	Panchanan Das: Econometrics in Theory and Practice,	International Standards <u>The STATA OMNIBUS:</u>	6 Hours

	Use of standard normal, chi2, t, and F statistics in linear regression model.	Analysis of Cross Section, Time Series and Panel Data with Stata 15.1, Springer Nature Singapore Pte Ltd. 2019.	Regression and Modelling with STATACourseraIndustry Mapping: Estimation of Simple Linear Regression Model using OLS technique in stata	
3 Module III:	Heteroscedasticity, Autocorrelation, Multicollinearity: Illustration by Using Stata	Nature Singapore Pte	International Standards : <u>NPTEL :: Economics -</u> <u>NOC: Introduction to</u> <u>Econometrics</u> Industry Mapping: Detection of Multicollinearity, Heteroscedasticity, Autocorrelation using stata.	8 Hours

Suggested Readings:

Panchanan Das: Econometrics in Theory and Practice, Analysis of Cross Section, Time Series and Panel Data with Stata 15.1, Springer Nature Singapore Pte Ltd. 2019.

Lesson Plan:

Module 1: Nature and Scope of Econometric

WORKING	LESSON PLAN – DESCRIPTION
DAY	
1	Overview of Econometrics: What is
	Econometrics and its scope.

	Key differences between Economics and Econometrics.
	Understanding the role of Econometrics in
	decision-making and policy analysis.
2	Definitions of Economic Models vs
	Econometric Models.
	Characteristics and examples of each.
	Practical applications of each in economics.
	Class discussion on how econometric models
	are built from economic theories.
3	Steps in Formulating Econometric Models:
	□ The four steps: Specification, Estimation,
	Hypothesis Testing, and Forecasting.
	☐ How to move from theory to practical
	econometric modeling
	☐ Hands-on example of a simple econometric
	model.
4	Structure of Economic Data: Cross-section,
	Time Series, Pooled, and Panel Data,
	Understanding data types and their uses in
	econometrics.
	ceonometres.
5	How econometrics is used in business and
	management decision-making (e.g., demand
	forecasting, pricing strategy, inventory
	management), Case study on the application of
	econometrics in a business context.
6	Understanding the difference between
	correlation and causation, Discussion on how
	regression analysis helps identify causal
	relationships, Real-world examples where
	regression helps infer causality.

WORKING	LESSON PLAN – DESCRIPTION
DAY	
7	What is Simple Linear Regression?
	Definition and components of the SLRM.
	Introduction to the assumptions of linear regression.
8	Practical: Simple Linear Regression in Stata.
9	The 5 classical assumptions for linear regression: Linearity, No perfect
	multicollinearity, Homoscedasticity, No autocorrelation, Exogeneity.
	Why these assumptions matter for the validity of regression estimates.
10	Practical: Visualizing assumptions using data examples.
11	Defining Population Regression Function (PRF) and Sample Regression
	Function (SRF).
	The role of the PRF in formulating hypotheses and the SRF in estimation.
12	Practical: Computing SRF using sample data
13	Introduction to the OLS method: The theory behind OLS estimation.
	Deriving OLS estimators.
14	Practical: Estimating a simple linear regression model using OLS in
	Stata
15	How to interpret the coefficients of the regression model economically.
	The significance of each coefficient and its impact on decision-making.
16	Understanding the Gauss-Markov theorem and why OLS estimators are
	BLUE (Best Linear Unbiased Estimators).
17	Practical: Hands-on examples demonstrating BLUE estimators in
· · ·	practice.
	F

18	Practical: Review of SLRM estimation using OLS and practical
	examples in Stata, In-class practice session using real-world data.

WORKING	LESSON PLAN – DESCRIPTION
DAY	
19	Statistical Inference in Linear Regression:
	Introduction to hypothesis testing in econometrics.
20	Setting up and testing null hypotheses using t-tests and F-tests.
21	Practical: Hypothesis testing in a simple regression model.
	Single hypothesis tests for individual regression coefficients.
	Understanding the logic and application of t-tests and chi ² tests.
22	Practical: Conducting t-tests and chi² tests in Stata.
23	Introduction to joint hypothesis testing: The F-test for comparing
	multiple regression models.
	How to interpret the F-statistic and its importance.
24	Practical: Conducting an F-test in Stata
25	Goodness of Fit in Regression Models: Understanding R ² and Adjusted
	R^2 as measures of model fit.
	The role of the F-statistic in assessing overall model significance.
26	Practical: Calculating and interpreting these metrics using regression
	outputs.

27	Differentiating between statistical significance and economic
	significance.
	How to make decisions based on both statistical tests and economic
	considerations.

LESSON PLAN – DESCRIPTION
What is multicollinearity, and why is it problematic for regression models?
Causes of multicollinearity
Detection of multicollinearity
Remedies for multicollinearity.
Practical: Detecting multicollinearity in Stata.
Understanding heteroscedasticity and its effects on regression results. Causes of heteroscedasticity
Detection of heteroscedasticity
Remedies for heteroscedasticity (e.g., weighted least squares).
Practical: Running heteroscedasticity tests in Stata
Understanding autocorrelation and its impact on regression analysis. Causes of autocorrelation

Module 4: Violations of Classical Assumptions

37	Detection of autocorrelation
38	Remedies for autocorrelation (e.g., using lagged variables or generalized least squares).
39	Practical: Detection of autocorrelation in stata
40	Final Review and Course Wrap-up.
41	Review all key topics, answer student questions, and finalize the course with a discussion on further study and research in econometrics.

Text Book:

Principles of Econometrics A Modern Approach Using EViews, Sankar Kumar Bhaumik, Oxford University Press

Reference Books:

Wooldridge,	Jeffrey	M.	(2013),	Introductory	Econometrics	_	А	Modern	Approach,	CENGAGE
learning										
Gujarati, Damoda	ar (2004), <i>B</i>	asic Eco	nometrics, N	IcGraw-Hill						

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur Syllabus for BBA(Business Analytics) Admission Batch 2022

Subject Name: Data Mining

Credit: 4

Lecture Hours: 40

Subject Code: BBABA604

Study Material and Syllabus.docx

MIT OpenCourseWare

Data Mining NPTEL

COURSE OBJECTIVES:

1. To provide a comprehensive understanding of emerging technologies such as Data warehousing, feature engineering etc.

2. To explore the applications, implications, and strategic advantages of emerging technologies in business for competitive advantage. COURSE OUTCOMES:

СО	Details
1	Students will understand foundational knowledge of emerging technologies such as Data warehousing, feature engineering and comprehending their principles, components, and functionalities.
2	Students will analyze the practical applications of these technologies in various business contexts, evaluating how they can optimize operations, enhance decision-making, and drive innovation.
3	Students will evaluate the strategic implications of adopting emerging technologies, including potential challenges, risks, and opportunities, to formulate informed strategies for competitive advantage.
4	Students will develop skills to plan and manage the integration of emerging technologies into business processes, ensuring alignment with organizational goals and effective change management

Module number	Торіс	Sub-topics	Text Book as per Syllabus	Mapping with Industryand	Lecture Hours	Corresponding Lab/Case Study
				International Academia		Assignment
1	Introduction to Data Mining	 Why Data mining? What kinds of data can be mined? What kind of data can be mined? What are the technologies are used? Which kinds of applications are targeted? Major issues in Data mining 	data mining with Case studies by G. K. Gupta	International Academia: Standford Opencourseware Data Mining Sloan School of Management MIT OpenCourseWare Industry Mapping:	12	Working on basic data understanding and types of data
2	Data Preprocessing	• Data cicaning	Introduction to data mining with Case	Understand the types and magnitude of data we use in the industry <i>International</i> <i>Academia:</i> Stanford	12	Preparing data for analysis using algorithms using
		• Data Integration	studies by G. K. Gupta	Opencourseware		python
3	Mining Frequent Patterns, Associations, and Correlations	 Basic Concepts: Market Basket Analysis Frequent Itemset Mining 	Introduction to data mining with Case studies by G. K.	International Standards: StandFord OpenCourse Data Mining Sloan School of	12	Undserstanding relationships between data using various algorithms
4	Classification Basic Concepts	 Basic concepts of classification Decision tree Induction Bayes Classification methods Rule based classification 	mining with Case studies by G. K. Gupta		18	Applying the algorithms of classification using python

	 Model evaluation an selection Techniques to improv classification accuracy 	Industry Mapping:		
5 Cluster Analysis and Outlier Detection	 Cluster Analysis Partitioning methods Outlier and outlie analysis Outlier detection methods Statistical approaches Clustering-based approaches Data mining applications Data mining and society 	Gupta	18	Applying the algorithms of clustering using python

Institute of Engineering & Management, Salt Lake Campus Institute of Engineering & Management, New Town Campus University of Engineering & Management, Jaipur

Syllabus for BBA(Business Analytics) Admission Batch 2022

Subject Name: Data Mining - Laboratory Credit: 2

Lecture Hours: 20

Subject Code: BBABA694

Study Material and Syllabus.docx

MIT OpenCourseWare

Data Mining NPTEL

COURSE OBJECTIVES:

- 1. To provide a comprehensive understanding of emerging technologies such as Data warehousing, feature engineering etc.
- 2. To explore the applications, implications, and strategic advantages of emerging technologies in business for competitive advantage.

COURSE OUTCOMES:

СО	Details
1	Students will understand foundational knowledge of emerging technologies such as Data warehousing, feature engineering and comprehending their principles, components, and functionalities.
2	Students will analyze the practical applications of these technologies in various business contexts, evaluating how they can optimize operations, enhance decision-making, and drive innovation.
3	Students will evaluate the strategic implications of adopting emerging technologies, including potential challenges, risks, and opportunities, to formulate informed strategies for competitive advantage.
4	Students will develop skills to plan and manage the integration of emerging technologies into business processes, ensuring alignment with organizational goals and effective change management

Module number	Торіс	Sub-topics	Text Book as per Syllabus	Mapping with Industryand International Academia	Lecture Hours	Corresponding Lab/Case Study Assignment
1	Introduction to Data Mining	 Why Data mining? What kinds of data can be mined? What kind of data can be mined? What are the technologies are used? Which kinds of applications are targeted? Major issues in Data mining 	data mining with Case studies by G. K. Gupta		12	Working on basic data understanding and types of data
2	Data Preprocessing	Data Integration	Introduction to data mining with Case	International Academia: Stanford Opencourseware Data Mining Sloan School of Management MIT OpenCourseWare Industry Mapping: How to preprocess data for best fit results	12	Preparing data for analysis using algorithms using python

3	Mining Frequent Patterns, Associations, and Correlations	Methods • Pattern Evaluation Methods	Standards: StandFord OpenCourse Data Mining Sloan School of Management MIT OpenCourseWare Industry Mapping: Algorithms to implement in data mining	Undserstanding relationships between data using various algorithms
4	Classification Basic Concepts	 Bayes Classification methods Rule based classification Model evaluation and selection 	Standards: MITOpenCourse	Applying the algorithms of classification using python
5	Cluster Analysis and Outlier Detection	 analysis Outlier detection methods Statistical approaches Clustering-based approaches 	International 18 Standards: MITOpenCourse	Applying the algorithms of clustering using python

Data mining and society	Understand the clustering algorithms and
	implement in the
	industry data

*Submitted by Sayan Karmakar, IEM, Saltlake campus TEXTBOOK:

Introduction to data mining with Case studies by G. K. Gupta INTRODUCTION TO DATA MINING WITH CASE STUDIES - G. K. GUPTA - Google Books

REFERENCE BOOK:

Data Mining: Concepts and Techniques by Han and Kamber

Case Studies

1. Case studies of Data Mining

Readings:

• Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2nd Edition, Cambridge University Press, March 2020. ISBN: 978-1108473989. <u>Online Book | Data Mining and Machine Learning</u>

Lesson Plan:

Module 1: Introduction to Data Mining: 3rd Year, Sec D (Faculty : Prof. Sayan Karmakar)

WORKING DAY	DAY	LESSON PLAN – DESCRIPTION
1	1	Data, Information and knowledge
2	2	Background of data mining
3	3	Knowledge discovery in databases
4	4	Objectives of data mining

5	5	Promises and challenges
6	6	Mining and other disciplines
7	7	Current state of data mining
8	8	WEKA machine learning tool

Module 1: Principles of data mining: 3rd Year, Sec D (Faculty : Prof. Sayan Karmakar)

WORKING DAY	DAY	LESSON PLAN – DESCRIPTION
1	1	Data mining process
2	2	Data mining approaches
3	3	Categories of data mining problem
4	4	Overview of data mining solutions
5	5	Evaluation of mining results
6	6	Data mining in WEKA
7	7	Review of basic concepts of probability and statistics
8	8	Summary

Module 2: Data, pre-processing and exploration: 3rd Year, Sec D (Faculty : Prof. Sayan Karmakar)

WORKING	DAY	LESSON PLAN – DESCRIPTION
DAY		
1	1	Input data and data types
2	2	Input datasets
3	3	Data sources
4	4	Data quality
5	5	Data pre-processing
6	6	Understanding data by exploration
7	7	Data pre-processing and visualizing in WEKA
8	8	Summary

Module 3: Mining Frequent Patterns, Associations, and Correlations: 3rd Year, Sec D (Faculty : Prof. Sayan Karmakar)

WORKING DAY	DAY	LESSON PLAN – DESCRIPTION
1	1	Problem description and decomposition
2	2	Finding all frequent itemsets: Apriori Algorithm
3	3	Generating association rules: Apriori Approach

4	4	Improving apriori approach
5	5	Evaluation of association rules
6	6	Association rules mining in practice

Module 4: Classification Basic Concepts: 3rd Year, Sec D (Faculty : Prof. Sayan Karmakar)

WORKING	DAY	LESSON PLAN – DESCRIPTION	
DAY			
1	1	Decision tree and decision tree induction approach	
2	2	The ID3 algorithm and information gain measure	
3	3	Attribute selection measures in other decision tree methods	
4	4	Solving the problem of overfitting	
5	5	Evaluate the performance performance of a decision tree	
6	6	Decsion tree classification in WEKA	
7	7	Presentation Class	
8	8	Presentation Class	
9	9	Presentation Class	
10	10	Presentation Class	
11	11	Presentation Class	
12	12	Presentation Class	

Module 5: Cluster Analysis and Outlier: 3rd Year, Sec D (Faculty : Prof. Sayan Karmakar)

WORKING DAY	DAY	LESSON PLAN – DESCRIPTION	
1	1	Problem of cluster detection	
2	2	Measure of proximity	
3	3	K-means clustering method	
4	4	Agglomeration clustering method	
5	5	Clustering evaluation and validation	
6	6	Clustering in WEKA	

Module 1,2,3,4 : 2nd Year,Sec B (Faculty : Prof. Suchana Roy)

WORKING DAY DAY LESSON PLAN – DESCRIPTION	WORKING DAY	DAY	LESSON PLAN – DESCRIPTION
---	-------------	-----	---------------------------

1	1	Case study Class – Module 1
2	2	Case study Class – Module 2
3	3	Case study Class – Module 2
4	4	Case study Class – Module 3
5	5	Case study Class – Module 3
6	6	Case study Class – Module 4
7	7	Case study Class – Module 4
8	8	Case study – Module 5

TEXTBOOK:

INTRODUCTION TO DATA MINING WITH CASE STUDIES - G. K. GUPTA - Google Books

Reference Book:

- 1. Data mining techniques and applications Hongbo Du by Cengage publications
- 2. Data Mining: Concepts and Techniques by Han and Kamber

EXAMINATION	Dates	PART – A	PART – B	PART – C	TOTAL MARKS
Mid Term 1	February 10, 2025 to February 21, 2025	Attempt 5 out of 10 questions; Each question carries 2 marks (2×5)	Attempt 2 out of 4 questions; Each question carries 5 marks (5×2)	Attempt 1 out of 2 questions; Each question carries 10 marks (10×1)	30
Mid Term 2	March 24, 2025 to April 2, 2025	Attempt 5 out of 10 questions; Each question carries 2 marks (2×5)	Attempt 2 out of 4 questions; Each question carries 5 marks (5×2)	Attempt 1 out of 2 questions; Each question carries 10 marks (10×1)	30
End Semester Examination	April 21, 2025 to May 9, 2025	Attempt 10 out of 15 questions; Each question carries 2 marks (2×10)	Attempt 6 out of 9 questions; Each question carries 5 marks (5×6)	Attempt 5 out of 8 questions; Each question carries 10 marks (10×5)	100

QUESTION PAPER PATTERN AND DATES

Examination Rules & Regulations:

https://iemcollege-

my.sharepoint.com/:b:/g/personal/iemcoe_office_iem_edu_in/EXrcoe3d6oxIogHKO074XeUBC9qm3XNaf_qUeSiVTNh5OQ?e=MMQn 40